This is a remixable version of open licensed content from • Fork this page on Github

Pigeye shark

This is a featured article. Click here for more information.

Pigeye shark Conservation status

Data Deficient ( IUCN 3.1) [1] Scientific classification Kingdom: Animalia Phylum: Chordata Class: Chondrichthyes Subclass: Elasmobranchii Order: Carcharhiniformes Family: Carcharhinidae Genus: _ Carcharhinus_ Species: C. amboinensis Binomial name Carcharhinus amboinensis
( Müller & Henle, 1839) Range of the pigeye shark [2] Synonyms "Synonym (taxonomy)")

Carcharias amboinensis Müller & Henle, 1839
Carcharias henlei Bleeker, 1853
Carcharias brachyrhynchos Bleeker, 1859
Triaenodon obtusus Day, 1878

The pigeye shark or Java shark (Carcharhinus amboinensis) is an uncommon species of requiem shark, family "Family (biology)") Carcharhinidae, found in the warm coastal waters of the eastern Atlantic and western Indo-Pacific. It prefers shallow, murky environments with soft bottoms, and tends to roam within a fairly localised area. With its bulky grey body, small eyes, and short, blunt snout, the pigeye shark looks almost identical to (and is often confused with) the better-known bull shark (C. leucas). The two species differ in vertebral count, the relative sizes of the dorsal fins, and other subtle traits. This shark typically reaches lengths of 1.9–2.5 m (6.2–8.2 ft).

The pigeye shark is an apex predator that mostly hunts low in the water column. It has a varied diet, consisting mainly of bony and cartilaginous fishes but also including crustaceans, molluscs, sea snakes, and cetaceans. This species gives birth to live young, with the developing embryos sustained to term via a placental connection to their mother. Litters of three to thirteen pups are born after a gestation period of nine or twelve months. Young sharks spend their first few years of life in sheltered inshore habitats such as bays, where their movements follow tidal and seasonal patterns. The pigeye shark's size and dentition make it potentially dangerous, though it has not been known to attack humans. It is infrequently caught by fisheries, which use it for meat and fins, and in shark nets used to protect beaches. The International Union for Conservation of Nature (IUCN) presently lacks adequate data to assess the conservation status of this species.

Taxonomy[ edit]

Drawing of Triaenodon obtusus, a synonym of C. amboinensis, from Francis Day's Fauna of British India (1889)

German biologists Johannes Müller and Jakob Henle described the pigeye shark as Carcharias (Prionodon) amboinensis in their 1839 Systematische Beschreibung der Plagiostomen. Later authors reassigned it to the genus _ Carcharhinus. The type specimen is a stuffed, 74 cm (29 in) long female originally caught off Ambon Island in Indonesia, from which the specific epithet "Specific name (zoology)") is derived. [3] [4] Several junior synonyms are known for this species, among them _Triaenodon obtusus, which was based on a near-birth pigeye shark foetus "Fetus (biology)"). [4]

Phylogeny and evolution[ edit]

Since the pigeye shark so strongly resembles the bull shark, morphology "Morphology (biology)")-based phylogenetic studies have considered the two species to be closely related. [5] [6] Neither this nor any other arrangement is strongly supported by molecular phylogenetic research, which to date has been inconclusive regarding this shark's evolutionary relationship to other Carcharhinus species. [7] [8]

Genetic analysis of pigeye sharks across northern Australia suggest that the evolutionary history of this species was affected by coastline changes during the Pleistocene epoch "Epoch (geology)") (2.6 million to 12,000 years ago). The patterns of diversity found in its mitochondrial DNA are consistent with the repeated splitting and merging of its ancestral populations as geographical barriers were alternately formed and inundated. The most recent of these barriers was a land bridge across the Torres Strait that re-opened only some 6,000 years ago; as a result, there is significant genetic separation between the sharks found off Western Australia and the Northern Territory and those found off Queensland. [9]

Description[ edit]

The pigeye shark (top) closely resembles the bull shark (bottom); external differences between the two species include the relative sizes of the dorsal fins and the angle of the notch in the anal fin.

The pigeye shark is a very robust-bodied species with a short, broad, and rounded snout. The small and circular eyes are equipped with nictitating membranes. The anterior rims of the nostrils bear medium-sized flaps of skin. The mouth forms a wide arch and has barely noticeable furrows at the corners. There are 11–13 (usually 12) upper and 10–12 (usually 11) lower tooth rows on each side; in addition, there are single rows of tiny teeth at the upper and lower symphyses (jaw midpoints). The teeth are broad and triangular with serrated edges; those in the lower jaw are slightly narrower, more upright, and more finely serrated than those in the upper. The five pairs of gill slits are of moderate length. [2] [4] [10]

The first dorsal fin is large and triangular, with a pointed apex and a concave trailing margin; it originates roughly over the posterior insertions of the pectoral fins. The second dorsal fin is less than a third as high as the first, and originates ahead of the anal fin. There is no midline ridge between the dorsal fins. The long pectoral fins are broad and slightly falcate (sickle-shaped), becoming narrow and pointed at the tips. The anal fin has a sharply notched trailing margin. The caudal peduncle has a deep notch on its upper surface at the caudal fin origin. The caudal fin is asymmetrical, with a well-developed lower lobe and a longer upper lobe with a notch in the trailing margin near its tip. [2] [4] [10]

The skin is covered by rather large dermal denticles, which become more tightly packed and overlapping with age; each denticle bears three to five horizontal ridges and five posterior teeth. [2] This species is grey above and white below, with a faint pale band on the flanks. The second dorsal fin and lower caudal fin lobe darken at the tips, particularly in juveniles. [4] An albino individual was caught off Queenland in 1987, which was the first known example of albinism in a requiem shark. [11] An adult pigeye shark typically measures 1.9–2.5 m (6.2–8.2 ft) long, while the largest individuals reach 2.8 m (9.2 ft) long. [2]

The pigeye shark can be most reliably distinguished from the bull shark by the number of precaudal (before the caudal fin) vertebrae (89–95 in C. amboinensis versus 101–123 in C. leucas). Externally, it has a greater size difference between its dorsal fins (first-to-second height ratio >3.1:1 versus ≤3.1:1 in C. leucas) and the notch in its anal fin margin forms an acute angle (versus a right angle in C. leucas). This species also usually has fewer tooth rows in the lower jaw (10–12 on each side versus 12–13 in C. leucas). [2] [4]

Distribution and habitat[ edit]

Though widely distributed in the tropical and subtropical marine waters of Eurasia, Africa, and Oceania, the pigeye shark does not appear to be common anywhere. Existing records are patchy, and the full extent of its range may be obscured by confusion with the bull shark. [1] In the eastern Atlantic, it is found off Cape Verde and Senegal, and from Nigeria to Namibia; [2] there is a single Mediterranean record from off Crotone, Italy. [12] It occurs all along the continental periphery of the Indian Ocean, from eastern South Africa to the Arabian Peninsula (including Madagascar, the Seychelles, and Mauritius), to Southeast Asia and northern Australia. Its range extends into the Pacific, northward to the Philippines and southern China, and eastward to New Guinea and some Micronesian islands. [2] Tagging and genetic data indicate that pigeye sharks, particularly juveniles, are not strongly migratory and tend to remain in a local area. The longest recorded distance covered by an adult is 1,080 km (670 mi). [9] [10]

The pigeye shark inhabits coastal waters down to a depth of 150 m (490 ft), favouring environments with fine sediment and murky water. It sometimes enters estuaries, but unlike the bull shark it does not ascend rivers and avoids brackish water. [2] [13] The movements and habitat usage of juvenile pigeye sharks have been extensively studied in Cleveland Bay in northeastern Queensland. Young sharks live in the bay year-round, staying mostly in the eastern side where the input from three rivers produces strong currents and high turbidity. Individual home ranges are relatively small, averaging 30 km2 (12 sq mi), and increase in size with age. The juveniles generally stay in water less than 40 m (130 ft) deep, with the youngest sharks spending the most time in the shallowest parts of the bay. They swim into the intertidal zone with the rising tide and depart as the tide recedes; this movement may relate to exploiting foraging opportunities on the submerged mud flats, or to avoiding predation or competition by staying out of the deeper waters occupied by larger sharks. There is also an annual movement cycle where the juveniles move closer to the river mouths during the dry season and farther from them during the wet season; since the rainy season brings a higher flow of fresh water into the bay, the sharks may be responding directly or indirectly to the resultant decrease in salinity and dissolved oxygen levels. [14] [15]

Biology and ecology[ edit]

The pigeye shark is a largely solitary animal, though occasionally several individuals may be found at the same location. [13] In the Mozambique Channel, it outnumbers the bull shark on the east side while the opposite is true on the west side, suggesting there may be competitive exclusion between these similar species. [4] Parasites documented from the pigeye shark include the myxosporean _ Kudoa carcharhini, [16] the copepods _ Pandarus smithii and _ P. cranchii, [17] and the tapeworms _ Callitetrarhynchus gracilis, [18]_ Cathetocephalus_ sp., [19]_ Floriceps minacanthus, [20] Heteronybelinia australis, [21] Otobothrium australe, _ O. crenacolle, [22] and _ Protogrillotia_ sp. [18] Young pigeye sharks are potentially vulnerable to predation by larger sharks. The natural mortality for juveniles in Cleveland Bay has been measured at no more than 5% per year; this rate is comparable to that in juvenile bull sharks, and is much lower than in juvenile blacktip sharks (C. limbatus) or lemon sharks (Negaprion brevirostris). [23]

Feeding[ edit]

Guitarfishes and other cartilaginous fishes are preyed upon by the pigeye shark, particularly off South Africa.

Though the pigeye shark will take prey from anywhere in the water column, it tends to hunt close to the sea floor. [13] An apex predator, it feeds mainly on teleost fishes such as croakers, flatfishes, and cutlassfishes, and to a lesser extent on cartilaginous fishes, cephalopods, and decapod crustaceans. It has also been recorded eating gastropods, sea snakes, dolphins, and whale carrion. [4] [24] Other sharks and rays figure much more prominently in the diets of South African pigeye sharks than those from other regions; the types consumed include requiem sharks, catsharks, angel sharks, guitarfishes, stingrays, and eagle rays. [13]

Life history[ edit]

The pigeye shark is viviparous; like in other requiem sharks, after the developing embryo depletes its supply of yolk, it is sustained to term by its mother through a placental connection formed from the empty yolk sac. [4] Mature females have a single functional ovary and two functional uteruses. Reproductive details vary among regions: off South Africa, the gestation period lasts approximately twelve months, with mating and birthing both occurring in late summer. The litters range from three to seven pups (average five) and the newborns are around 75–79 cm (30–31 in) long. [1] [13] Off northern Australia, the gestation period lasts nine months, with birthing taking place in November and December. The litters range from six to thirteen pups (average nine) and the newborns are around 59–66 cm (23–26 in) long. [25]

Young sharks can be found in shallow inshore environments such as bays until at least three years of age, suggesting that this species uses these sheltered habitats as nurseries. [26] As the sharks grow older, they venture farther from land into deeper water more and more often, until they eventually disperse. [14] [27] This is a long-lived, slow-growing species; males grow faster and reach a smaller ultimate size than females. Sexual maturity is attained at around 2.1 m (6.9 ft) long and twelve years of age for males, and 2.2 m (7.2 ft) long and thirteen years of age for females. The maximum lifespan is at least 26 years for males and 30 years for females. [25] [28]

Human interactions[ edit]

Large and formidably toothed, the pigeye shark is regarded as potentially dangerous to humans, though it has not been implicated in any attacks. This species is caught infrequently on longlines and in gillnets, and is used for meat and fins. [10] However, its flesh can cause ciguatera poisoning. In November 1993, some 500 people in Manakara, Madagascar were poisoned, 98 of them fatally, after eating meat from a pigeye shark. This was the first recorded mass ciguatera outbreak caused by a shark, as well as the first with a significant death toll. [29] The International Union for Conservation of Nature (IUCN) has listed the pigeye shark overall as Data Deficient, while noting that its rarity may render it susceptible to overfishing. [1] In KwaZulu-Natal, South Africa, small numbers of pigeye sharks are caught in shark nets set up to protect beaches. The catch rate and the average size of sharks caught both decreased between 1978 and 1998, leading to concerns that the local population may be depleted. Thus, the IUCN has given this species a regional assessment of Near Threatened in the southwestern Indian Ocean. [30]

References[ edit]

  1. ^ a b c d Cliff, G. (2009). "Carcharhinus amboinensis". _ IUCN Red List of Threatened Species. Version 2012.2_. International Union for Conservation of Nature
  2. ^ a b c d e f g h i Voigt, M.; Weber, D. (2011). Field Guide for Sharks of the Genus Carcharhinus. Verlag Dr. Friedrich Pfeil. pp. 47–49. ISBN  978-3-89937-132-1
  3. ** ^** Müller, J.; Henle, F.G.J. (1839). Systematische Beschreibung der Plagiostomen (volume 2). Veit und Comp. p. 40. 
  4. ^ a b c d e f g h i Compagno, L.J.V. (1984). Sharks of the World: An Annotated and Illustrated Catalogue of Shark Species Known to Date. Food and Agricultural Organization of the United Nations. pp. 462–463. ISBN  978-92-5-101384-7
  5. ** ^** Compagno, L.J.V. (1988). Sharks of the Order Carcharhiniformes. Princeton University Press. pp. 319–320. ISBN  978-0-691-08453-4
  6. ** ^** Naylor, G.J.P. (1992). "The phylogenetic relationships among requiem and hammerhead sharks: inferring phylogeny when thousands of equally most parsimonious trees result". Cladistics 8: 295–318. doi: 10.1111/j.1096-0031.1992.tb00073.x
  7. ** ^** Vélez-Zuazoa, X.; Agnarsson, I. (February 2011). "Shark tales: A molecular species-level phylogeny of sharks (Selachimorpha, Chondrichthyes)". Molecular Phylogenetics and Evolution 58 (2): 207–217. doi: 10.1016/j.ympev.2010.11.018. PMID  21129490
  8. ** ^** Naylor, G.J.; Caira, J.N.; Jensen, K.; Rosana, K.A.; Straube, N.; Lakner, C. (2012). "Elasmobranch phylogeny: A mitochondrial estimate based on 595 species". In Carrier, J.C.; Musick, J.A.; Heithaus, M.R., eds. The Biology of Sharks and Their Relatives (second ed.). CRC Press. pp. 31–57. ISBN  978-1-4398-3924-9
  9. ^ a b Tillett, B.J.; Meekan, M.G.; Broderick, D.; Field, I.C.; Cliff, G.; Ovenden, J.R. (2012). "Pleistocene isolation, secondary introgression and restricted contemporary gene flow in the pig-eye shark, Carcharhinus amboinensis across northern Australia". Conservation Genetics 13 (1): 99–115. doi: 10.1007/s10592-011-0268-z
  10. ^ a b c d Last, P.R.; Stevens, J.D. (2009). Sharks and Rays of Australia (second ed.). Harvard University Press. pp. 253–254. ISBN  978-0-674-03411-2
  11. ** ^** McKay, R.J.; Beinssen, K. (1988). "Albinism in the pigeye whaler shark Carcharhinus amboinensis Mueller and Henle from Queensland Australia". Memoirs of the Queensland Museum 25 (2): 463–464. 
  12. ** ^** De Maddalena, A.; Della Rovere, G. (2005). "First record of the pigeye shark, Carcharhinus amboinensis (Müller & Henle, 1839), in the Mediterranean Sea". Annales Series Historia Naturalis 15 (2): 209–212. 
  13. ^ a b c d e Cliff, G.; Dudley, S.F.J. (1991). "Sharks caught in the protective gill nets off Natal, South Africa. 5. The Java shark Carcharhinus amboinensis (Müller & Henle)". South African Journal of Marine Science. Suppl. 11 (1): 443–453. doi: 10.2989/025776191784287817
  14. ^ a b Knip, D.M.; Heupel, M.R.; Simpfendorfer, C.A.; Tobin, A.J.; Moloney, J. (2011). "Ontogenetic shifts in movement and habitat use of juvenile pigeye sharks Carcharhinus amboinensis in a tropical nearshore region". Marine Ecology Progress Series 425: 233–246. doi: 10.3354/meps09006
  15. ** ^** Knip, D.M.; Heupel, M.R.; Simpfendorfer, C.A.; Tobin, A.J.; Moloney, J. (2011). "Wet-season effects on the distribution of juvenile pigeye sharks, Carcharhinus amboinensis, in tropical nearshore waters". Marine and Freshwater Research 62 (6): 658–667. doi: 10.1071/MF10136
  16. ** ^** Gleeson, R.J.; Bennett, M.B.; Adlard, R.D. (2010). "First taxonomic description of multivalvulidan myxosporean parasites from elasmobranchs: Kudoa hemiscylli n.sp. and Kudoa carcharhini n.sp. (Myxosporea: Multivalvulidae)". Parasitology 137 (13): 1885–1898. doi: 10.1017/S0031182010000855. PMID  20619061
  17. ** ^** Henderson, A.C.; Reeve, A.J.; Tang, D. (2013). "Parasitic copepods from some northern Indian Ocean elasmobranchs". Marine Biodiversity Records 6: e44. doi: 10.1017/S1755267213000195
  18. ^ a b Olson, P.D.; Caira, J.N.; Jensen, K.; Overstreet, R.M.; Palm, H.W.; Beveridge, I. (2010). "Evolution of the trypanorhynch tapeworms: parasite phylogeny supports independent lineages of sharks and rays". International Journal for Parasitology 40 (2): 223–242. doi: 10.1016/j.ijpara.2009.07.012. PMID  19761769
  19. ** ^** Caira, J.N.; Mega, J.; Ruhnke, T.R. (2005). "An unusual blood sequestering tapeworm (Sanguilevator yearsleyi n. gen., n. sp.) from Borneo with description of Cathetocephalus resendezi n. sp from Mexico and molecular support for the recognition of the order Cathetocephalidea (Platyhelminthes: Eucestoda)". International Journal for Parasitology 35 (10): 1135–1152. doi: 10.1016/j.ijpara.2005.03.014. PMID  16019004
  20. ** ^** Campbell, R.A.; Beveridge, I. (1987). "Floriceps minacanthus sp. nov. (Cestoda: Trypanorhyncha) from Australian fishes". Transactions of the Royal Society of South Australia 111 (3–4): 189–194. 
  21. ** ^** Palm, H.W.; Beveridge, I. (2002). "Tentaculariid cestodes of the order Trypanorhyncha (Platyhelminthes) from the Australian region". Records of the South Australian Museum 35 (1): 49–78. 
  22. ** ^** Schaeffner, B.C.; Beveridge, I. (2013). "Redescriptions and new records of species of Otobothrium Linton, 1890 (Cestoda: Trypanorhyncha)". Systematic Parasitology 84 (1): 17–55. doi: 10.1007/s11230-012-9388-1. PMID  23263940
  23. ** ^** Knip, D.M.; Heupel, M.R.; Simpfendorfer, C.A. (2012). "Mortality rates for two shark species occupying a shared coastal environment". Fisheries Research. 125–126: 184–189. doi: 10.1016/j.fishres.2012.02.023
  24. ** ^** Kinney, M.J.; Hussey, N.E.; Fisk, A.T.; Tobin, A.J.; Simpfendorfer, C.A. (2011). "Communal or competitive? Stable isotope analysis provides evidence of resource partitioning within a communal shark nursery". Marine Ecology Progress Series 439: 263–276. doi: 10.3354/meps09327
  25. ^ a b Stevens, J.D.; McLoughlin, K.J. (1991). "Distribution, size and sex composition, reproductive biology and diet of sharks from northern Australia". Australian Journal of Marine and Freshwater Research 42 (2): 151–199. doi: 10.1071/MF9910151
  26. ** ^** Knip, D.M.; Heupel, M.R.; Simpfendorfer, C.A. (2012). "Evaluating marine protected areas for the conservation of tropical coastal sharks". Biological Conservation 148 (1): 200–209. doi: 10.1016/j.biocon.2012.01.008
  27. ** ^** Tillett, B.J.; Meekan, M.G.; Parry, D.; Munksgaard, N.; Field, I.C.; Thorburn, D.; Bradshaw, C.J. (2011). "Decoding fingerprints: elemental composition of vertebrae correlates to age-related habitat use in two morphologically similar sharks". Marine Ecology Progress Series 434: 133–142. doi: 10.3354/meps09222
  28. ** ^** Tillett, B.J.; Meekan, M.G.; Field, I.C.; Hua, Q.; Bradshaw, C.J.A. (2011). "Similar life history traits in bull (Carcharhinus leucas) and pig-eye (C. amboinensis) sharks". Marine and Freshwater Research 62 (7): 850–860. doi: 10.1071/MF10271
  29. ** ^** Habermehl, G.G.; Krebs, H.C.; Rasoanaivo, P.; Ramialiharisoa, A. (1994). "Severe ciguatera poisoning in Madagascar — a case-report". Toxicon 32 (12): 1539–1542. doi: 10.1016/0041-0101(94)90312-3. PMID  7725322
  30. ** ^** Cliff, G. (2009). "Carcharhinus amboinensis (Southwest Indian Ocean subpopulation)". _ IUCN Red List of Threatened Species. Version 2012.2_. International Union for Conservation of Nature

External links[ edit]

Navigation menu

This page was forked with permission from

Fork this page on Github
Download this page as a zip file